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PREFACE

This species profile is one of a series on coastal aquatic organisms,
principally fish, of sport, commercial, or ecological importance. The profiles
are designed to provide coastal managers, engineers, and biologists with a brief
comprehensive sketch of the biological characteristics and environmental
requirements of the species and to describe how populations of the species may be
expected to react to environmental changes caused by coastal development. Each
profile has sections on taxonomy, life history, ecological role, environmental
requirements, and economic importance, if applicable. A three-ring binder is
used for this series so that new profiles can be added as they are prepared.
This project is jointly planned and financed by the U.S. Army Corps of Engineers
and the U.S. Fish and Wildlife Service.

Suggestions or questions regarding this report should be directed to one of
the following addresses.

Information Transfer Specialist
National Wetlands Research Center
U.S. Fish and Wildlife Service
NASA-Slide11 Computer Complex
1010 Gause Boulevard
Slidell, LA 70458

or

U.S. Army Engineer Waterways Experiment Station
Attention: WESER-C
Post Office Box 631
Vicksburg, MS 39180
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EVERSIBLE  PROBOSCIS

FLESHY PALPS

TENTACULAR CIRRI
DORSAL CIRRUS

VENTRAL CIRRUS

ANTERIOR VIEW
(Left parapodium from

middle of body)

ANTERIOR VIEW
(Proboscis extended)

Figure 1. Sandworm (Nereis virens).- -

SANDWORM

NOMENCLATURE/TAXONOMY/RANGE

Scientific name.... ..Nereis (Neanthes)
virens Sars, 1835 (Figure 1)

Preferred common name.........Sandworm
Other common names...........Clamworm,

ragworm
Phylum........................Annelida
Class.......................Polychaeta
Order.....................Phyllodocida
Family......................Nereididae

Geographic range: Found on both sides
of the North Atlantic as far south
as France off Europe and south to
Virginia off the east coast of the
United States. Figure 2 shows the

distribution of the sandworm  in the
North Atlantic region of the United
States. Also recorded in the north
Pacific from Alaska to central Cal-
ifornia, in the Bering Sea, and off
Japan. Ranges from the high water
mark to about 150 m.

MORPHOLOGY/IDENTIFICATION AIDS

Description

Body elongate, thickened anteriorly
and somewhat flattened posteriorly,
with more than 200 segments. Length
up to 900 mm and width greater than

1



MAINE

i CANADA\

ATLANTIC OCEAN

-cii’

M I L E S

Figure 2. Distribution of sandworm  in the North Atlantic region. Heavier
stippling indicates regions of higher abundance.
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40 mm. Prostomium (head) small,
pentagonal, with a distal pair of
small antennae and two oairs of eyes
in a trapezoidal arrangewnt (Figure
1). Head with a pair of stout,
fleshy palps, each with a small,
rounded palpostyle distally. Eversihle
proboscis with a pair of curved
brownish or black jaws, each with
5 to 10 teeth. Dark, conical,
chitinous paragnaths (teeth) embedded
in the surface of the proboscis. Four
pairs of slender tentacular cirri,
the longest reaching as far as
the ninth seglnent. The first segment
lacking setae, twice the width of an.y
following segrient. Parapodia with
dorsal and ventral lobes (biramous)
with the same shape throughout the
length of the body. Dorsal and
ventral cirri digitifom. Setae from
the dorsal rami (notopodia) consisting
of long, jointed setae (homogomph
spinigers). Setae from the ventral
rami of the parapodia (neuropodia)
consisting of long, jointed setae
(homogomph and heterogomph spinigers)
and jointed setae with short, toothed
blades (heterogomph falcigers).

Identification Aids

The surface of the skin is iri-
descent, reflecting bright hues in the
light. The body of the male is a dark
blue, blending into green at the base
of the parapodia. The females are a
dull, greenish color. In both sexes,
the parapodia appear orange to bright
red due to the numerous capillaries in
these appendages.

Taxonomic References

Refer to Sars 1835; Verrill 1873,
1881; Webster and Benedict 1884, 1887;
Fauvel 1923; Treadwell 1939, 1941;
Pettibone 1963; Imajima 1972.

REASON FOR INCLUSION IN SERIES

The harvesting of sandworms and
bloodworms (Glycera dibranchiata) is a

multi-million dollar industry in Maine
(Dow and Creaser 1970; Dow 1978;
Schroeder 1978). Over 1,200 people
are licensed to dig baitworms in Maine
(Schroeder 1978). Since the early
1970's, the bloodworm populations in
Maine have been declining, leading to
increased harvesting of sandworms.
Nevertheless, there seems to be no
major concern that sandworms are being
overharvested. Creaser et al. (1983)
calculated the Maximum Sustainable
Yield and Optimal Sustainable Yield
for Maine populations. Blake (1979)
suggested that bait-diggers are not
altering the population structure of a
heavily dug mudflat.

LIFE HISTORY

Gametogenesis

Like most polychaetes, the sexes in
N. virens are separate (Bumpus 1898).
In females from Maine populations,
oocytes begin rapid growth in October
or November with oocyte maturation
occurring in the following April or
May, when the oocytes' diameters reach
X$95 pm (Creaser and Clifford

The oogenic cycle requires
12-20' months, depending on when the
oocytes are released into the coelom.
The oocytes synthesize their own yolk
(Fischer and Schmitz 1981). Snow and
Marsden (1974) reported a similar
temporal pattern of oogenesis for a 1.
virens population in the Bay of Fundy,
w i t h maturation occurring in May.
Brafield and Chapman (1967) reported
that oogenesis requires 12-14 months
in a British population and that ripe
oocytes appear in May. Spermato-
genesis follows a similar chronology
(Brafield and Chapman 1967; Snow and
Marsden 1974; Creaser and Clifford
1982).

Spawning

Nereis virens is a
species;

semelparous
reproduction results in death

(Bass and Brafield 1972). Mature
males become structurally modified for
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swimming (epitokous) and swarm in the
water column during times of the new
moon (Brafield and Chapman 1967; Bass
and Brafield 1972; Snow and Marsden
1974; Creaser and Clifford 1982).
Temperatures in excess of 7-8 *C seem
to be a precondition for spawning
(Creaser and Clifford 1982; Goerke
1984a; Yokouchi 1985). Premature
spawning can be induced by increasing
temperature in the laboratory (Bass
and Brafield 1972). Swarming of males
is known to be under hormonal control
as well (Marsden 1971, 1978; Marsden
and Jost 1975; Bell and Marsden 1980).
Females do not become swimming
epitokes and do not swarm; fertili-
zation is presumed to occur in the
burrows of females (Creaser and
Clifford 1982). Fecundity varies be-
tween 50,000 and 1,300,OOO eggs, de-
pending on the size of the female
(Creaser and Clifford 1982).

Larval Development

Females of N. virens extrude
fertilized eggs &to the surface of
the mud (Snow and Marsden 1974).
Development apparently occurs on or
near the sediment surface. Snow and
Marsden (1974) believed that
planktonic embryos or larvae are not
found in New Brunswick populations,
although weak spontaneous swimming of
larvae was observed in laboratory
cultures. Bass and Brafie‘ld (1972)
reported that trochophore larvae do
enter the plankton, but never for more
than 15 h. Sveshnikov (1960) and
Yokouchi (1985) reported larvae with
four segments in the plankton.
Juveniles are benthic 12 days after
fertilization and crawl into the
intertidal zone after 16 weeks (Bass
and Brafield  1972).

Population Structure

The demography of the sandworm  is
controversial. Brafield and Chapman
(1967) concluded from their size-
frequency data that sandworms mature
in 2 or, occasionally, 3 years. Snow
and Marsden (1974) claimed that Bay of

Fundy worms do not mature until 5 or 6
years of age. They re-analyzed the
data of Brafield  and Chapman (1967)
and claimed that British worms mature
after 6 or 7 years. Creaser and
Clifford (1982) reported 5 distinct
modes in a Maine population which
probably correspond to year-classes.
Worms in a Norwegian population repro-
duce after 3 years (Kristensen 1984a).
As with all other populations, repro-
duction results in death.

ECOLOGICAL ROLE

Feeding

Sandworms feed by extending a por-
tion of their bodies from an opening
of their mucus-lined burrows. The
burrows consist of a series of inter-
connected U-shaped sections, generally
in the upper 10 cm of mudflats  (Reise
1981). Disagreements over the trophic
status of sandworms span a century.
Nereis virens was regarded as a preda-
tory-ill (1873) and Maxwell
(1897),  and as an omnivore by Turnbull
(1876). Gross (1921) concluded that
sandworms are herbivorous and that
they locate their food by chance en-
counter. His conclusion was chal-
lenged by Copeland  and Wieman (1924)
who showed that sandworms captured and
ate animals in the laboratory; sand-
worms also demonstrated a well-
developed chemoreceptive sense (see
also Retzius 1895; Hamaker 1898; Case
1962). The thorough work by Goerke
(1971a, b) showed that sandworms fed
on both plant and animal material and
that they should be considered omni-
vores. Recent field experiments have
shown that sandworms feed on amphipods
and polychaetes (Commit0 1982; Ambrose
1984a, b; Commit0 and Schrader 1985).

Nereis virens feeds by capturing a
foodmwithts eversible proboscis
which is armed with two jaws. The
jaws, especially the distal biting
portions, are hardened with zinc,
which accounts for up to 2.4% of the
total jaw weight (Bryan and Gibbs
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‘rL_ 1979, 1980). The jaws are powerful
enough to crush small bivalves (Lewis
and Whitney 1968). Food items are
passed into the esophagus, where a
trypsin-like proteolytic enzyme is

9 produced (Michel and DeVillez 1979),
as well as other enzymes (Kay 1974).
Lewis and Whitney (1968) have iden-

, tified a cellulase which is induced by
the presence of algae in the gut.
Michel and DeVillez  (1980) described
striated spines in the esophagus which
apparently triturate food items.

Several workers have estimated
assimilation efficiency and production
of sandworms. Kay and Brafield (1973)
calculated an assimilation efficiency
of 85.2% and annual production of 8.4
g ash-free dry weight/m2. Kristensen
(1984a) calculated the annual pro-
duction of a Norwegian population as
23.7 ash-free
Neuhoffg (1979)

dry weight/m2.
demonstrated that

Nereis virens has faster growth and
higher efficiency than two congeners,
N. diversicolor and N. succinea.
Sandworm growth and eTficiency is

I.c
greater when worms are fed clam tissue
than when fed oyster biodeposits
(feces and pseudofeces) (Tenore and
Gopalan 1974; Tenore et al. 1978).

Sandworms are also capable of taking
up dissolved organic matter. Com-
pounds shown to be absorbed include
glutamic acid and aspartic acids
(Chapman and Taylor 1968; Taylor 1969;
Jorgensen and Kristensen 1980a, b),
leucine (Bass et al. 1969), glycine
(Jorgensen 1980), valine (Jorgensen
1979), and alanine and guanine (Jor-
gensen and Kristensen 1980a, b). All
of these studies demonstrate that net
influx occurs when worms are exposed
to natural concentrations of free
amino acids (varying from 40 to 2,011
nmol). Jorgensen and Christiansen
(1980a) showed that sandworms can
obtain their total respiratory energy
requirements by absorption of inter-
stitial amino acids. The larvae can
take up to 200 times the amount of
leucine that adult worms take up,
yielding final tissue concentrations

700 times that of the incubation
medium (Bass et al. 1969).

Predator-Prey Relations

Predation by sandworms can have sig-
nificant effects in marine soft-
sediment communities. Nereis virens
has been shown to reduce signifi-
cantly the abundance of the amphipod
Corophium volutator, permitting asso-
ciated infauna to increase in abun-
dance (Commit0 1982; Ambrose 1984a,
b). Commit0 and Schrader (1985)
suggested that N. virens consumes the
predatory polychaete Nephtys incisa
when C-- volutator is not present.

Sandworms are potential prey in
marine food webs. A number of gull
and tern species take spent sandworms
(Spaans 1971; Shklyarevich 1979).
Ambrose (1986) showed that gulls may
take large, nonreproductive indivi-
duals. Cantin et al. (1974) showed
that 16%-40% of the diet of Common
Eiders, Somateria mollissima, in late
May and mid-July is composed of N.
virens. Significant numbers of sari&
worms are preyed upon by the poly-
chaete Glycera dibranchiata (Ambrose
1984a, b).

Biogeochemical Effects

The exchange of solutes, such as
nitrate, between the sediment and the
overlying water is strongly affected
by burrow-dwelling infauna like
Nereis virens (Kristensen
1985; Krzen et al. 1985).

1984b,
The

burrows of N. virens have been shown
to increase-the flux of ammonia into
the water column and to be responsible
for 35% of the nitrification and 38%
of the denitrification in an estuarine
habitat (Henriksen et al. 1980).
Nitrification rates are higher in the
burrow walls than on the sediment
surface (Kristensen 1984b, 1985;
Kristensen et al. 1985). Irrigation
of burrows for respiration causes an
increase in the uptake of glycine by
the bacteria living in the burrows
(Jorgensen et al. 1980). Ventilation

5



of the burrow creates a halo of
oxidized sediment along the length
of the burrow. It is not surprising
that small zoobenthos aggregate in
the oxidized regions outside of sand-
worm burrows; nematode and gnathosto-
mulid abundances were increased by
94% and 200%. respectively. in the
p r o x i m i t y  o f  N.virens bur<ows (Reise
1981).

ENVIRONMENTAL REQUIREMENTS

Substratum

Nereis virens has been reported from
a range ofdiment types, varying
from sandy muds to fine sands (Petti-
bone 1963; Bass and Brafield 1972;
Snow and Marsden 1974; Reise 1981).
Muddier sediments seem to be pre-
ferred.
700/m2,

Highest densities, up to
are found in the lower por-

tions of the intertidal zone (Bass
and Brafield 1972; Rasmussen 1973;
Snow and Marsden 1974). The migra-
tion of nonreproductive adults in the
water column in the winter (Dean 1978)
may be a mechanism to allow sandworms
to find more suitable benthic habi-
tats.

Salinity

Nereis virens is euryhaline (Sayles
1935:Jocn and Dales 1957;
Richards 1969; Walmsby 1970; Appy et
al. 1980), tolerating salinities as
low as 0.5 ppt (Larsen and Doggett
1978). Nereis virens is intermediate
in its ability to tolerate low and
high salinity stress relative to three
congeneric species: N. diversicolor,
N. succinea, and N. pelagica (Theede
Zt al. 1973). Reduced salinities
cause an increase in ammonia excretion
(Haberfield 1977) and tachycardia
(deFur and Mangum 1979).

Dissolved Oxygen

Nereis virens has blood containing a
hemoglobinused  for oxygen transport
rather than storage (Economides  and

Wells 1975). Decreased oxygen tension
results in increased ventilatory
pumping of the burrow to increase
oxygen transport to nonvascularized
tissues (Lindroth 1938; deFur and
Mangum 1979). Hyman (1932) noted that
oxygen intake is independent of sur-
rounding tension within moderate
ranges of tension. The ventilation
amplitude increases with increasing
temperature (Kristensen 1981, 1983a,
b, c>.

When sandworms are exposed at low
tide and oxygen tensions decline, an
anaerobic pathway is utilized (Scott
1976; Scott et al. 1976). The worms
produce large amounts of d-lactate and
later pay an oxygen debt. Under long
periods of anaerobiosis, sandworms
switch to glycogen degradation which
results in the production of succinate
and volatile fatty acids (Schottler
1979).

Temperature

Kristensen (1983b) states that
optimal temperatures are between 11 OC
and 20 OC, although sandworms can
tolerate temperatures as high as 37.5
OC in the laboratory. Richards (1969)
claimed that sandworms are highly
tolerant of changes in temperature.

Adaptability to Laboratory Conditions

Nereis virens is- - a potentially
valuable research organism because it
can be maintained in healthy culture
in the laboratory (Goerke 1979, 1984b;
Kristensen 1983c). Its adaptability
to the laboratory led to its use in
some of the first studies on con-
ditioned response and habituation in
invertebrates (Copeland 1930, 1934;
Clark 1960; Evans 1963a, b, 1966). A
word of caution is in order for any
who use sandworms as bioassay orga-
nisms: sandworms maintained in sea-
water without sediment, where the
worms cannot form burrows, may show
abnormal metabolism (Pamatmat 1982).

6



Toxicology

Sandworms have been the focus of
many studies on the bioavailability of
heavy metals and organic pollutants.
A significant fraction (30%-40%) of
the total body burden of zinc is
always found in the jaws (Bryan and
Gibbs 1979, 1980), so concentrations
of zinc in sandworms do not closely
follow environmental concentrations,
and sandworms are poor indicators of
zinc contamination. The jaws contri-
bute less than 1% of the total body
burden of silver, cadmium, copper,
iron, and lead. Cadmium uptake in-
creases with increasing concentration
in the environment; uptake, primarily
from interstitial water, is greater in
small worms (Ray et al. 1980). Rice
and Chien (1977) suggested that there
may be a cadmium detoxification
mechanism in the coelomic fluid; body
concentrations may be 1,000 times the
seawater concentration. Biochemical
stress indices have been determined
for sublethal cadmium dosages (Carr
and Neff 1982). Ray et al. (1981)
indicated that the body burden of
copper and zinc did not vary between
clean and contaminated environments
but significantly greater body
burdens of lead and cadmium were
found in worms from contaminated
sites. Pereira and Kanungo (1981)
demonstrated significant effects of

silver on respiration and osmotic
balance.

Among organic contaminants, Eisler
et al. (1972) determined that nitrilo-
acetic acid (NTA) at a concentration
of 5,500 mg/l resulted in 50% mortal-
ity of sandworms. Sandworms are
intermediate in tolerance to NTA com-
pared to many other marine species
(Eisler et al. 1972). Sandworms have
been shown to accumulate and meta-
bolize PCB's, w'ith small worms accumu-
lating 10.8 times the environmental
concentration of 0.04-0.58 ppm and
adults 3.8 times (Ernst et al. 1977;
Goerke and Ernst 1977; Goerke 1979;
McLeese et al. 1981). Excretion of
PCB's can be described by an exponen-
tial function which varies with tem-
perature; the maximum rate of elimina-
tion occurs at 12 OC (Goerke 1984c).
Biochemical stress indices have been
measured in response to pentachloro-
phenol (Carr and Neff 1981) and to
refined oil products (Carr and Neff
1984). McElroy (1985) showed that a
polycyclic aromatic hydrocarbon (PAH)
was metabolized by Nereis virens.
Sandworms accumulate and metabolize
the insecticide Lindane, reaching
equilibrium in lo-14 days (Goerke and
Ernst 1980). Sandworms are much more
tolerant of organochlorine pesticides
than the shrimp Crangon septemspinosa
(McLeese et al. 1982; Haya et al.
1984).
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Figure 3. Bloodworm (Glycera dibranchiata).

BLOODWORM

NOMENCLATURE/TAXONOMY/RANGE MORPHOLOGY/IDENTIFICATION AIDS

Scientific name................Glycera
dibranchiata Ehlers, 1868 (Figure 3)

Preferred common name........Bloodworm
Other common names...........Beakworm,

beak-thrower
Phy?um........................Annelida
Class.......................Polychaeta
Order.....................Phyllodocida
Family......................Glyceridae

Geographic range: Found from low wa-
ter out to about 400 m along the
Atlantic coast from the Gulf of St.
Lawrence to Florida. Also recorded
in the Gulf of Mexico, and in the
eastern Pacific from central Cali-
fornia to Mazatlan, Mexico. Figure 4
gives the distribution of this spe-
cies in the North Atlantic region.

8

Description

Body elongate, robust, having up to
300 segments. Largest individuals
exceed 370 mm in length and 11 mm in
width. Prostomium (head) conical,
with 14-15 annulations and two distal
pairs of antennae (Figure 3). Indis-
tinct eyes on the basal annulation of
the head, or eyes absent. Eversible
proboscis with four dark, curved,
hollow terminal jawpieces. Proboscis
covered with small, conical probosci-
dean organs. Parapodia with dorsal
and ventral lobes (biramous), hearing
short dorsal cirri and more elongate
ventral cirri. Paired, nonretractile
gills or branchiae beginning on
segments 15-20 and continuing to near
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Figure 4. Distribution of bloodworm in the North Atlantic region. Heavier
stippling indicates regions of higher abundance.
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the posterior of the body; gills
elongate or inflated, exceeding the
length of the parapodia (Figure 3).
Dorsal lobe of parapodia (notopodia)
with simple, elongated, finely
serrated setae. Ventral lobe (neuro-
podia) with simple and jointed
elongated, finely serrated setae.

Identification Aids

The animals are bright pink. The
species is characterized by the pair
of enlarged gills above and below each
of the middle parapodia. Glycera
dibranchiata can be distinguished from
the similar G. americana in that the
latter has retractile, bush-like gills
above the parapodia.

Taxonomic References

Refer to Ehlers 1868; Verrill 1881;
Webster and Benedict 1884; Arwidsson
1898; Hartman 1940; Pettibone 1963.

REASON FOR INCLUSION IN SERIES

Baitworms (bloodworms and sandworms)
are an important fishery in the
Northeastern United States and Nova
Scotia (MacPhail 1954; Klawe and
Dickie 1957; Dow and Creaser 1970;
Schroeder 1978). Baitworms form the
fourth largest fishery in Maine,
trailing only lobsters, clams, and
total finfish. In the past 30 years,
professional bait-diggers have removed
nearly one billion bloodworms (Dow
1978). Over 90% of the bloodworms in
the United States come from Maine with
the remainder from Nova Scotia (7%)
and Massachusetts (2%). Recent evi-
dence, based on sampling of the worm
sizes of commercial landings, indi-
cates that 2-year old worms, rather
than the larger S-year old worms, are
presently being harvested, suggesting
that the populations are being over-
harvested (Dow 1978; but see Schroeder
[1978] for an alternative interpreta-
tion of the data). Overharvesting of
mudflats  in two Maine counties has

eliminated bloodworms (Anonymous
1979). Genetic evidence also indi-
cates that some populations are being
;;;;yarvested (Vatias and Bristow

Dow (1978) believes the only
long-term solution to maintaining
sufficient standing stock to support
present intensities of harvesting is
to culture worms under controlled
environmental conditions. Creaser et
al. (1983) presented models for the
determination of Maximum Sustainable
Yield and Optimal Sustainable Yield.
The imposition of size-limits has been
suggested (Saft 1978). Confounding
attempts at managing stocks is an
inverse correlation between bloodworm
production and mean annual tempera-
ture; this relationship may explain
some of the temporal variance in
bloodworm densities (Dow 1978).

LIFE HISTORY

Gametogenesis

Separate sexes are found in blood-
worms. Gametogenesis occurs in the
undivided body cavity (coelom) and
requires about 1 year (Simpson 1962a,
b). Oocytes are released into the
coelom when they are about 21 pm in
diameter. Mature oocytes are 151-160
pm in diameter.

Spawning

Populations in Maine and south-
western Nova Scotia reproduce from
mid-May until early June (Klawe and
Dickie 1957; Creaser 1973). Popula-
tions from Maryland reproduce in the
fall and possibly in late spring
(Simpson 1962b). Shortly before re-
production, bloodworms undergo radical
morphological changes. Their ali-
mentary tract and musculature atrophy.
Their parapodia and setae elongate.
These sexual forms (epitokes) swarm in
shallow water over a period of 1 to 3
days at high tide in the afternoon
(Simpson 1962a, 1973). Males emit
sperm while swimming. Females
rupture, releasing up to 10 million
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eggs per individual (Creaser 1973).
Both males and females die after
spawning.

Larval Development

The early development of Glycera
dibranchiata apparently occurs on the
sediment surface (Simpson 1962b).
Development proceeds to swimming
stages in 14-20 h after fertilization,
giving rise to unspecialized,
planktotrophic larvae (Simpson 1962a).
The larvae are not found in plankton
tows, suggesting that their planktonic
life is short or that they are
demersal (living just above the
bottom).

Population Structure

Klawe and Dickie (1957) and Creaser
(1973) found that Glycera dibranchiata
has a maximum life span of 5 years.
The most rapid growth occurs during
the second and third years. Most
bloodworms reproduce and die at 3
years of age although some postpone
reproduction until the fourth or fifth
year.

ECOLOGICAL ROLE

Feeding

There has been much debate about
whether bloodworms are deposit-feeders
or predators. Sanders et al. (1962)
suggested that Glycera dibranchiata is
a deposit-feeder, based on gut con-
tents. Frankenberg and Smith (1967)
and Adams and Angelovic (1970) demon-
strated significant utilization of
dead organic matter by bloodworms in
the laboratory. Such findings are
puzzling in light of the formidable
feeding apparatus of G. dibranchiata.
These worms possess an eversible pro-
boscis which contains four terminal
jaws (Wells 1937). The jaws are
strengthened, particularly distally,
by accumulation of copper; 13% of the
distal tip is composed of copper
(Gibbs and Bryan 1980). Each jaw is

coursed by a canal with numerous pores
to the exterior through which a
secretion from associated glands can
flow (Michel 1966; Wolff 1976, 1977).
The secretion is a neurotoxin, espe-
cially effective
(Michel and Keil 1975yn

crustaceans
It is there-

fore not surprising that bloodworms
have been found to feed on amphipods
(Dubois-Laviolette 1985) and poly-
chaetes (Ambrose 1984a, b).

A congeneric species, G. e, has
been shown to maintain -a permanent
gallery of burrows (Ockelmann and Vahl
1970). Prey are detected by mechano-
reception and ambushed at the sediment
surface. Glycera dibranchiata
occupies burrows (Klawe and Dickie
1957), but their exact configuration
has not been observed. Anecdotal
evidence for G. dibranchiata as an
ambush predator derives from the
foraging behavior of Black-bellied
Plovers (Pluvialis squatarola),
specialized predators G.
dibranchiata (Dubois-Lavio1et.T:  1985j.
To bring bloodworms near the sediment
surface, these plovers engage in foot-
trembling behavior, setting up
vibrations at the sediment surface.
Bloodworms apparently mistake these
vibrations for the vibrations of a
potential prey item. Stolte (1932)
described the complex innervation of
the mechanoreceptive sense organs of
bloodworms. Bloodworms refused to eat
dead prey in the laboratory, indi-
cating the importance of mechano-
reception in prey location (Klawe and
Dickie 1957; Fauchald and Jumars
1979).

Several features make it likely that
Glycera dibranchiata is primarily a
predator: the proboscis armed with
neurotoxin-injecting jaws, mechano-
receptive abilities, lack of a com-
plete gut (Ockelmann and Vahl 1970),
and the presence of proteolytic
enzymes in the gut (Vahl 1976). Evi-
dence does exist indicating that
bloodworms can successfully utilize
detritus (Frankenberg and Smith 1967;
Adams and Angelovic 1970). It seems
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likely that detritivory is manifested
only in the absence of suitable animal
prey.

Bloodworms are capable of utilizing
dissolved organic matter. Stephens et
al. (1965) showed that bloodworms take
up creatine opportunistically.
Stevens and Preston (1981a, b, c)
showed that alanine can be concen-
trated against a concentration gradi-
ent. Preston and Stephens (1969),
Preston (1970) and Chien et al. (1972)
indicate that a number of other amino
acids can be concentrated.

Predator-Prey Relations

Bloodworms can significantly affect
populations of other infaunal orga-
nisms. Wilson (1979) showed a cor-
relation between bloodworm abundance
and the number of maldanid polychaetes
regenerating their anterior ends and
argued that bloodworms were browsing
on the maldanids. Ambrose (1984a, b)
showed that bloodworms consume signi-
ficant numbers of the sandworm,
Nereis virens. Dubois-Laviolette
(1985) reported that bloodworm guts
contained the amphipod Corophium
volutator.

Predators on G. dibranchiata seem to
be few. They-were rarely found in
fish guts (Klawe and Dickie 1957).
Dubois-Laviolette (1985) reported that
bloodworms are the major prey of
Black-bellied Plovers (Pluvialis
squatarola) in the upper Bay of Fundy.
The striped bass, Morone saxatilis,
and the sand shrimp, Crangon septem-
spinosa, consume large numbers of
spent, dead bloodworms.

JI REMENTSENVIRONMENTAL REQI

Substratum

Bloodworms live in a range of sub-
stratum types, but seem to be most
abundant in very fine muds with high
organic content (Klawe and Dickie
1957; Creaser 1973; Dubois-Laviolette

1985). Bloodworms are conspicuous in
the water column during the fall and
winter (Dean 1978b; Graham and Creaser
1979). Such swimming worms are not
reproductive; they may be searching
for more suitable benthic habitat.

Salinity

There are no published data on
tolerance limits of bloodworms to
salinity stress. Costa et al. (1980)
demonstrated that bloodworms are osmo-
conformers. Bloodworms use free amino
acids to decrease intracellular solute
concentrations during hypo-osmotic
stress. Machin (1975) found that
these animals equilibrated to 50% and
150% seawater after lo-25 h, producing
a urine that is iso-osmotic  to the
coelomic fluid. The volume of coelo-
mocytes changes rapidly in response to
different osmotic pressures (Machin
and O'Donnell 1977).

Dissolved Oxygen

Glycera dibranchiata is called a
bloodworm because its hemoglobin
imparts a reddish color to the body.
The hemoglobin is found in cells in
the body cavity (coelom); a circu-
latory system is lacking. No data
exist on the minimum dissolved oxygen
concentration needed for survival.
The hemoglobin of bloodworms consists
of two different molecules, differing
greatly in molecular weight and oxygen
affinity (e.g., Weber et al. 1977;
Harrington et al. 1978; Parkhurst et
al. 1981). The two hemoglobin types
allow for the storage of oxygen under
conditions of low oxygen tension and
for the transport of oxygen under con-
ditions of high oxygen tension. Man-
gum (1970) and Hoffman and Mangum
(1970) showed that much of the oxygen
transport in bloodworms continues
after experimentally blocking the
hemoglobin, implying that the storage
capability of hemoglobin is the more
important use. In addition to hemo-
globin, the muscles of the proboscis
contain a myoglobin which facilitates
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transfer of oxygen (Terwilliger and
Terwilliger 1981).

Toxicology

Limited information is available on
the effect of heavy metals and organic
pollutants on bloodworms. In contami-
nated sites, copper may increase in
the body but not in the jaws; 67% of
the body burden of copper is in the
jaws (Gibbs and Bryan 1980). Zinc
concentrations remain reasonably
constant in both the jaws and body for
worms exposed to different levels of

environmental zinc. Rice and Chien
(1979) showed that cadmium accumulates
through both the body surface and the
intestine. They argued that the
coelomic fluid may act like mammalian
metallothioneins to bind the metal
ions. Medeiros et al. (1981) showed
that mercury uptake is very rapid,
with 75% of the equilibrium value
being attained after only 2 h of
exposure. PCB's do not produce
increased mortality in bloodworms but
may affect the ability of coelomocytes
to phagocytize pathogens (Anderson et
al. 1984).
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