Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Mid-Atlantic)

BLUERSH

Coastal Ecology Group

兰

Species Profiles: Life Histories and Envi ronnental Requirenents of Coastal Fi shes and Invertebrates ($\mathbf{m} \mathbf{d}$ - Atlantic)

BLUEFI SH
by

Geral d B. Pottern
Mel vin T. Hui sh
and
J. Howard Ker by

North Carolina Cooperative Fishery Research Unit
Departnent of Zool ogy
North Carolina State Uni versity
Ral eigh, NC 27695

Project Officer
David Mbran
U. S. Fi sh and Wildife Service National Uétlands Research Center 1010 Gause Boul evard Slidell, LA 70458

Perforned for
Coastal Ecol ogy Group
Wht er ways Experi ment Station
U. S. Arny Corps of Engi neers

Vicksburg, MS 39180
and
U.S. Departnent of the Interi or

Fish and Wildife Service
Research and Devel opment
National Vetlands Research Center Whishi ngton, DC 20240

This profile should be referenced as follous:
U.S. Fish and Wildife Service. 1983-19,. Species profiles: life histories and envi ronnental requi renents of coastal fishes and invertebrates. U.S. Fi sh Villdl. Serv. Bi ol. Rep. $82(11)$. U.S. Army Corps of Engi neers, TR EL-82-4.

This profile should be cited as follows:
Pottern, G B., M T. Huish, and J. H Kerby. 1989. Species profiles: life hi stories and envi ronment al requi rements of coastal fishes and invertebrates (mid-Atlantic) -- bl uefish. U.S. Fi sh Wildl. Serv. Biol. Rep. 82111.94). U. S. Army Corps of Engi neers, TR EL- 82-4. 20 pp.

PREFACE

This species profile is one of a series on coastal aquatic organisns, principally fish, of sport, commercial, or ecol ogical importance. The profiles are desi gned to provi de coastal managers, engi neers, and bi ol ogi sts with a bri ef comprehensi ve sketch of the bi ol ogi cal characteristics and environnental requi rements of the speci es and to descri be how popul ations of the speci es nay be expected to react to envi ronmental changes caused by coastal devel opment. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. Thi s proj ect is jointly pl anned and fi nanced by the U.S. Army Corps of Engi neers and the U.S. Fi sh and Vildife Service.

Suggestions or questions regarding this report should be directed to one of the following addresses.

I nf ormation Transf er Speci al ist National Wetl ands Research Center U. S. Fi sh and Vildife Service NASA SI i de11 Computer Compl ex 1010 Gause Boul evard Sl i del I, LA 70458
or
U. S. Army Engi neer Wat ervays Experi ment Station Attention: VESER-C
Post Office Box 631
Vicksburg, MS 39180

CONMERSI ON TABLE

Metric to U.S. Customary

CONTENTS

Page
PREFACE i i i
CONERSI ON TABLE iv
ACKNONLEDGMENTS vi
NOMENCLATURE/ TAXONOM/ RANGE 1
MDRPHOLOGY/ I DENTI FI CATI ON 1
Adul t 1
Eggs and Larvae. 2
REASON FOR I NCLUSI ON IN SERI ES. 2
LI FEH STORY 3
Reproducti ve Feat ures, 3
Spawning and Mgration Routes. 4
GROVTH CHARACTERI STI CS. 7
First Year 7
Subsequent Years 7
FI SHERI ES 8
Recr eati onal 8
Comercial 10
Popul ati on Dynanics. 12
Regul ation and Managenent 12
ECOLOG CAL ROLE 13
Food and Feedi ng 13
Predation, Parasitism and Competition 13
Physi ol ogi cal Ecol ogy. 14
EMM RONMENTAL REQU REMENTS AND STRESS 14
Temperat ure. 14
Phot operi od. 15
Sal inity 15
Oxygen 15
Contaminants 15
REFERENCES 17

ACKNONLEDGMENTS

The authors gratefully acknow edge the aid of Sandra Landes for her research efforts. Unpublished fishery data nere provi ded by Joan Pal ner, U.S. National Marine Fi sheries Service, Fi shery Statistics and Economics Branch. I nf or mation on current bl uefish research and management activities was provi ded by David Keifer, mid-Atlantic Fi shery Managenent Council, and Steve Berkel ey, South Atlantic Fishery Managenent Council. Revi ews by Jeff Ross, North Carolina Di vision of Marine Fisheries, and Stuart Vilk, U.S. National Marine Fisheries Service, are mach appreci ated.

This work was conducted by nembers of the North Carolina Cooperative Fi shery Research Unit which is supported by North Carolina State Uni versity, North CaroIina Villdife Resources Comission, and U. S. Fish and Wilidife Service.

Fi gure 1. Bl uefish (from J ordan and Evermann 1896-1900).

BLUEFI SH

NOMENCLATURE/ TAXONOMY/ RANGE

Sci entific nane.............. . . Ponat omus sal tatrix (Li nnaeus)
Pref erred common name. Bl uefish (Figure 1)
Ot her common names bl ue. tailor, elf, fatback, snapper, snap nackerel, ski pj ack, ski p nackerel, horse mackerel, greenfish, chopper.
Cl ass . Ostei chthyes
Di vi si on , , , , Tel eostei
Order . Percifornes
Fami l y. Ponat omi dae
The bl uefish is the onl y I iving species in the family Ponat omi dae, whose cl osest rel atives are the jacks and pompanos, family Carangi dae. Several geographical races of P. saltatrix are recognized (Lund 1961).

Geographi c range: Bl uefish occur in temperate and tropical uaters on the continental shel f and in estuarine habitats around much of the world. In North Anerica they I ive al ong most of the Atlantic seaboard from Nova Scotia south, around the tip of Florida, and al ong the Gulf coast to northern

Mexi co. Thei r worl dwi de range al so i ncl udes Bermuda, the Bahanas, the northern coast of Cuba, Venezuel a, southeastern Brazil, Uruguay, the Azores, the Mediterranean Sea, the Bl ack Sea, northwest Africa, southern Africa, Madagascar, the Mal ay Peni nsul a, and the enti re coast of Australia (Vジlk 1977).

MDRPHOLOGY/ I DENTI FI CATI ON

Adul t

The adult bl uefish (Figure 1) is an obl ong, I aterally compressed, streanined fish up to 1 mtotal length (TL), with a large compressed head, I arge obl ique nouth, bel Iy compressed to a bl unt edge, and forked caudal fin. Col oration is bl uish to greeni sh dorsally, fading to sil ver ventrally; a dark bl otch at each pectoral fin base is the only di stinct narki ng. Body, cheeks, and opercl es are covered with neakly ctenoid scal es, 95 al ong lateral line, but the top of the head and the ridge above the cheeks are unscal ed. The anterior
spi ny dorsal fin, with 8 to 9 spines, is separate from and lower than the posterior soft dorsal, with 24 to 25 rays. The anal fin, with 2 to 3 very small spi nes and 26 to 28 rays, is slightly behind and about equal in length to the soft dorsal fin. Pectoral fins are rather low set, and the pel vic fins attach directly beneath them Maxillae extend to the rear of the eyes, the premaxillae are protractile, and the lover jaw projects forward of the nouth. The j aws each have a row of long, unequal, wi del y spaced teeth; the voner, tongue, and palatines have several bands of villiform teeth. Vertebrae number 24 to 26. (Compiled from Jordan and Evermann 1896-1900; Bi gel ow and Schroeder 1953; Mller and Jorgenson 1973).

Eggs and Larvae

Bl uefish eggs (Figure 2a) are similar to those of many other pel agic spawning fishes. They are buoyant, spherical, 0.9 to 1.2 mm in di aneter, with a snooth transparent nenbrane, pal e anber yol k, and a si ngle darker anber oil globule 0.2 to 0.3 mmin di ameter. The bodi es of advanced enbryos (Fi gure 2b) have 24 nyoneres and do not completely encircle the yol k. (From Oeuel et al. 1966; Li ppson and Mbran 1974).

Bl uefish Iarvae are 2.0 to 2.4 mm TL at hatching (Fi gure 2c). The yol k sac is more than half of the body length, an oil globule lies at the posterior end of the yol k, and stellate nel anophores are scattered on the head and al ong the back. Four days post-hatching (Figure 2d), the yol k is nostly absorbed, the nouth is devel oped, and di stinct mid-dorsal and mid-ventral pi gment bands are evident. Fin rays are perceptible at 6.0 mm TL (Fi gure 2e), and fins are fully developed at 13 to 14 mm TL , at which size they resenble adults but with proportionately I arger heads (Fi gure 2f). (From Norcross et al . 1974; Li ppson and Mbran 1974.)

REASON FOR I NCLUSI ON IN SERI ES

Bl uefish comprise less than 1% of the U.S. Atlantic coast comercial fishery I andi ngs, in terns of both wei ght and dollar val ue; but the comercial catch has tripled over the past two decades (Wilk 1977; Thompson 1986), and recent trends in U.S. fish consumption indi cate econonic incentives for much greater catches: Per capita consumption of edible fish and shellfish in the United States during 1985 was 20% greater than duri ng 1975, and 50\% greater than during 1965. "Nutriti onal demands of consumers, as well as improving methods of catchi ng, handling, and processing seafoods may reasonably be expected to lead to greater consumption levels in future years" (Thompson 1986).

In contrast to its comercial import ance, the recreati onal val ue of this speci es is enornous. Bl uefish comprise about 15% by numbers and nearly tuice as much by wei ght of Atlantic coast sport fish landi ngs. About 90% of the average 55 million kg of bl uefish taken annually over the past 7 years (about 8 times nore than the conmercial catch) were hooked by angl ers in the mid-Atlantic region (Holliday 1984, 1985a, 1985b, 1986).

Because bluefish are abundant al ong nost of the east coast, easy to catch, good to eat, and provide an unusually long fishing season, they have remai ned popular with sport fishernen since the 1800's. "Nb other species is as important to all sorts of anglers.... It is unl i kel y that any ot her speci es could compl etel y repl ace it, were it to di sappear" (Wilk 1977).

Periodic di sease outbreaks over the past 20 years (Mhoney et al. 1973) suggest that the speci es is sensitive to coastal nater quality degradation, and theref ore coastal I and use planners and devel opers should consider the effects of their activities upon bluefish populations.

Figure 2. Developmental stages of the bluefish. Drawings a, b, c, and drom Deuel et al. 1966; \mathbf{e} and \mathbf{f} redrawn from Norcross et al. (1974).

LI FE H STORY

Reproductive Features

Bl uefish are heterosexual and reach sexual maturity during their
second year at about 35 cm fork length (FL). Males nature slightly earlier than fenal es, but nei ther grouth rate nor ultimate adult size is sexually di norphic (Wilk 1977; Wilk et al. 1978). The sexes cannot be
distingui shed by external feat ures. Lassiter (1962) reported a 2-to-1 female to male ratio in North Carolina, but Wilk (1977) reported a l-to-I sex ratio anong school s of all ages al ong the entire Atlantic coast. Fecundi ty of 3- to 4-year-old fenal es ranged from 0.6 to 1.4 million eggs in a snall sample from North Carolina (Lassiter 1962). Fertilization is external; eggs and sperm are shed into the open sea by migrating school s, without further parental care. Larvae drift and feed among the surface plankton until they netanorphose and begin their migrations either south or toward the coastal nursery areas (Kendall and Wal ford 1979).

Spawning and Mgration Routes

Fisheries data suggest that nost North Anerican bluefish are migratory, spending their summers from New Engl and to Cape Hatteras, NC., and their winters around Florida and the Gulf Stream Snaller bl uefish generally travel close to shore during both the spring and fall migrations, except during spawning. ader fish travel near shore in their northern range, but apparently shift farther offshore in the south with periodic forays toward the coast, si nce they appear infrequently but in large school s south of Virginia, especially during the fall migration (Lund and Maltezos 1970; Wilk 1977). There al so appear to be snall non-migratory (or I ess migratory) populations in the south Fl orida and Gulf of Mexico regi ons (Barger et al . 1978; Kendal I and Wal ford 1979). The degree of reproductive i sol ation of the various Atlantic and gulf coast populations (including those that are migratory and those that appear to be nonnigratory) is uncl ear. Vilk (1977) and Matl ezos (1970), however, recognize very small but consi stent norphoI ogi cal differences (see Population Dynamics) bet ween the two maj or spawning aggregations that comprise the mid-Atlantic fishery: a south-

Atlantic spring- spawning stock and a mid-Atlantic summer-spawning stock.

Figures 3a and 3b map the migration routes of spring-spawning and summer-spauni ng bl uefish, respectivel y, during their first year of life. Figures 4a and 4b map the migration routes of ulufish of these two popul ations ol der than 1 year. The figures are presented in order of age, but our di scussi on of this compl ex and incompl etel y understood nigration necessarily begins with the spawning adul ts.

The spring-spawning stock arrive at the continental slope/ Gulf Stream interface between north FI orida and Cape Hatteras, NC, mainly in April and May, from their wintering areas in south FI orida or offshore in the south Atlantic (Figure 4a). Spawning occurs in pulses as the school s travel northward. North of Cape Hatteras the spent adults begi \mathbf{n} heading toward shore for the remainder of the warm season. Snaller ones generally turn west sooner and find their way into A bemarl e Sound, Chesapeake Bay, and Del aware Bay, whereas I arger ones follow the continental slope farther north and turn west into Long Island Sound and Narragansett Bay, or continue around Cape Cod to the north Atlantic region. As tenperature and phot operiod decline in aut um, the school s ori ent southward agai n, young ones cl ose to shore and ol der ones farther offshore (Vilk 1977; Kendal I and Val ford 1979).

Summer-spawni ng bl uefish arri ve over the outer hal f of the continental shel f (about 50 to 150 km of fshore) bet neen Cape Cod and Cape Hatteras from J une through August, probably from the sane wintering areas as the spring spawners (Figure 4b). After spawning, adults migrate toward the mid-Atlantic and north Atlantic coasts, especially Long Island Sound (Lund and Maltezos 1970). They depart in autum al ong with the spring spawners.

Figure 3. Mgration routes of bl uefish from hatching until 1 year old.

Figure 4. Migration routes of uefish over 1 year ol d.

Juveniles from the spring spawning drift northward with the Gulf Stream past Cape Hatteras and al ong the conti nental sl ope (Fi gure 3a). When continental shelf waters warm sufficiently by early summer, they cross the shelf and nigrate into the mid-Atlantic bays and est uaries. Here they feed heavily and grow rapidly until fall, then migrate south al ong the coast to thei r south Fl orida wintering areas. The following spring the yearlings travel back up the coast, returning mainly to the midAtlantic bays, though some stop earlier and spend their second summer in North Carolina (Wik 1977; Kendall and W al ford 1979).

Juveniles from the nid-Atlantic summer spawning renai n offshore over the continental shelf for the renai nder of the warm season (Fi gure 3b). Sone visit the coastal areas briefly in early fall, but then return seavard for thei r southern migration. Mst young- of-the- year bl uefish caught during winter in Fl orida appear to be from the spring spawning, so summerspawned young probably remain farther offshore through the winter, and make their first maj or coastal appearance the following spring, nostly in the south Atlantic and in the sounds of North Carolina (Wilk 1977; Kendal I and VAl ford 1979).

GRONTH CHARACTERI STI CS

First Year

Bl uefish I arvae begi \mathbf{n} feeding when the yol k supply is exhausted, at 3 to 4 mm TL (Norcross et al. 1974). When the spring-spawned young arrive in mid-June in the mid-Atlantic bays they are 1 to 2 nonths old and 25 to 50 mm standard length (SL); by migration time in late Septenber these fish have achi eved lengths of 175 to 200 mm SL. The foll owing spring they return from south Florida at about 260 mm SL, when their first scale annulus
forns in May (Lassiter 1962; Kendal I and Val ford 1979).

Summer-spawned young I ag behi nd in grouth because they are hat ched later in the season and because nost do not utilize the fertile bays and estuaries until they are nearly a year old. Those that visit the midAtlantic coast briefly in Septenber are 40 to 70 mm SL just prior to their southward migration. When they reappear in North Carolina in spring and devel op their first scale annulus, they are about 120 mm SL. Growth rates of these summer-spanned fish apparently exceed those of the springspawned fish during the second year, since at age 2 or 3 the size difference between the two stocks is much less pronounced than at age 1. (From Lassiter 1962; Norcross et al. 1974; Kendall and Wbl ford 1979.)

Subseauent Years

Beyond yearlings, lengths are usually expressed as fork length (FL), which approxi natel y equal s $1.1 \times$ SL. Vilk (1977) summarizes age, length, and wei ght data for 7,500 bl uefish up to 14 years ol d taken bet ween Rhode Island and Florida over a 6 year period. Richards (1976) neasured a sample of 64 bl uefish up to 7 years ol d from Long Island Sound. His data agree closel y with those of wilk (1977), but he remarks that grouth is hi ghly variable in the first few years, with much overlap in size bet ween age classes.

Lassiter (1962) presents the only study to date in which the spring spawning and summer spawning popul ati ons are model ed separatel y, based on several hundred bl uefish up to 812 mm FL collected off the North Carolina coast. He esti mates the rel ationshi ps of age ($t=$ years) versus fork length (mm) and age (years) versus wei ght (grans) for bl uefish ol der than 1 year as follows:

Spring spawners:
FL $\left.=\mathbf{1}, 285\left[1-\mathrm{e}^{-0.103(\mathrm{t}}+1.366\right)\right]$
$\left.\mathbf{W}=28,943\left[1-e^{-0.103(t}+1.366\right)\right]^{3}$
Sunmer spawners:

$$
\begin{aligned}
& \mathbf{F L}=675\left[1-\mathrm{e}^{-0.342(\mathrm{t}+0.249)}\right] \\
& \mathbf{W}=4,244\left[1-\mathrm{e}^{-0.342(\mathrm{t}+0.249)}\right]^{3}
\end{aligned}
$$

Lassiter's (1962) and wilk's (1977) age versus length rel ationshi ps are plotted in Fi gure 5, and their age versus weight relationships are plotted in Figure 6. Note that Lassiter's equations suggest a slower grouth rate beyond 3 years and a smaller ultimate asymptotic size for the summer spawners than for the spring spawners. Subsequent authors have not investigated this di screpancy, and it nay be an artifact of his regionally restricted data. Allonetric fork length(m) versus wei ght (grans) rel ationshi ps for the pool ed populations have been presented by Lassiter (1962) based on 646 North Carol ina specinens, and by WIk et al. (1978) based on 343 New York Bi ght speci nens:
$\log \mathbf{W t}=2.903 \log \mathrm{FL}-4.611$
(Lassiter 1962)
$\log \mathrm{W}=3.036 \log \mathrm{FL}-4.953$
(Wilk et al. 1978)

FI SHERI ES

Recreati onal

The bl uefish has ranked first anong sport fish in the nid-Atlantic region and in the United States overall in terns of both number and wei ght nearly every year since it first achi eved that di stinction in 1970. Table 1 summarizes recreational fishery data compiled from various U. S. Nati onal Marine Fi sheries Service (NMFS) publications. During recent years, bluefish have comprised about 15% by numbers and nearly 30% by wei ght of all species in the Atlantic

Figure 5. Age versus fork length of bl uefish over 1 year ol d.

Fi gure 6. Age versus wei ght of bl uef i sh over 1 year ol d.
coast (Mai ne to Florida Keys) recreational fishery. The mid-Atlantic States (Massachusetts to North Carol ina) contribution has increased from about 70% during the 1960's to about $\mathbf{9 0 \%}$ of the total U.S. recreational bl uefish catch during the 1980' s. Average wei ght of bluefish caught has varied between 1.0 and 1.8 kg over the past 25 years, dependi ng on the rel ative contributions of northern and southern fishernen to the total catch, but there has been no apparent overall change in the average size of available bluefish. The size distribution of blufish caught from 1983 to 1985 is bi nodal: fish in the 250 to 400 mm FL size class make up
the bulk of the recreational catch, with a snaller peak at 750 to 850 mm FL. Inl and maters (bays, sounds, estuaries) have contributed slightly less t han hal f of the total catch during the past 7 years. About onethird are taken from shore or from man-made structures al ong the shore, and the remaining two-thi rds are taken from boats. Trolling, chumming, casting, li ve-bait fishing, jigging, still fishing, and drift fishing techniques are used by various anglers to catch bluefish.

Spring, summer, and especi ally fall yield nost of the recreational catch in the mid-Atlantic, but Iarge

Table 1. Recreational bluefish fishery statistics, 1960-85.

Year	Number (millions)		Weight (million kg)	\% of total Atlantic catch ${ }^{\text {a }}$	Area of fishing (\%) Mbde of fishing (\%)			
	MA to	NC ME to TX	ME to TX		Inland ${ }^{\text {b }}$	Ocean ${ }^{\text {c }}$	Shored	Boat ${ }^{\text {e }}$
1960	17	24	23	11	-	--	21	79
1965	22	31	43	15	29	71	39	61
1970	23	36	55	12	39	61	39	61
1979	33	38	61	13	44	56	25	75
1980	40	43	70	15	62	38	32	68
1981	29	32	60	16	28	72	35	65
1982	30	33	47	15	41	59	30	70
1983	41	44	66	16	48	52	37	63
1984	27	30	40	12	44	56	40	60
1985	25	28	45	12	45	55	32	68

anumber of bluefish expressed as \% of total finfish taken by recreational fisher men bet ween ME and the FL Keys.
bpercent (by number) of ME to TX recreational bluefish catch taken from bays, sounds, and estuari es.
${ }^{\text {CPercent (by number) of ME to TX recreational bl uefish catch taken from open }}$ ocean waters.
dpercent (by number) of ME to TX recreational bluefish catch taken from shore, piers, and jetties.
ePercent (by number) of ME to TX recreational bluefish catch taken from private, rented, and chartered boats.
--Data not available
Compiled from the 1960, 1965, and 1970 Saltuater Angling Surveys (Oark 1962; Deuel and Q ark 1968; Deuel 1973) and from the 1979-85 Marine Recreational Fishery Statistics Surveys (Holliday 1984, 1985a, 1985b, 1986).
fish are available year-round in the sout her nnost mid-Atlantic and the south Atlantic for anglers venturing offshore to the Gulf Stream (Wik 1977). Spring-spawned young-of-theyear caught during the fall migration, and yearlings of both stocks caught during spring, are especially popular with novi ce anglers si nce they are plentiful in inshore waters.

Commerci al

Bl uefish are harvested for human consumption as fresh whole fish or fillets; there is little or no industrial use of this species. During the peak years 1980-83, when an average 7.4 million kg of bluefish were caught annually, this species comprised only about 0.5% of the Atlantic coast comercial finfish and shellfish i ndustry I andi ngs (Thompson 1981, 1982, 1983, 1984a). The soft, dark neat of bluefish does not freeze well, so fishermen and seafood di stributors are at the nercy of short-termlocali zed market denand. This feat ure has dijscouraged I arge-scale devel opnent of the bl uefish fishery and kept the price low in the past, but recent advances in fishery methods and freezing and processing technol ogy may soon increase the donestic market and create substantial new export markets as well (Wik and Brown 1980).

Bl uefish Iandi ngs by U.S. commercial fishernen at ports in the midAtlantic states, conpiled from various NMFS statistical publications, are summarized in Table 2. During the I ast decade (1976-85), North Carolina has been the largest supplier, averaging about 28% of the total U.S. bl uefish catch, or nearly 1.8 million kg annually. Virginia is ranked second, with 18% of the U.S. catch. New York and New Jersey each have I anded about $10 \%-12 \%$ of the U.S. total; Massachusetts, Maryl and and Rhode Isl and each about 3\% 5\% and Connecticut and Del aware each about 1\% or less. Al totalled, the mid-

Atlantic region accounts for approxi natel y 83% of the total U. S. bl uefish catch. About $\mathbf{9 0 \%}$ of the combi ned catch of Maryl and and Virginia, or about one-fifth of the U.S. catch, is taken in Chesapeake Bay. Until the Iate 1970's, nearly $\mathbf{9 0 \%}$ of the U.S. commerci al bl uefish catch was taken less than $\mathbf{3} \mathbf{~ m i}$ offshore; in more recent years the i nshore catch has dropped to about 70\% of the total, as offshore catch effort in the U. S. Fi shery Conservation Zone has increased, especially off North Carolina.

The commercial fishing season from Cape Cod, MA to Del aware Bay is primarily May though Novenber, with peak catches from July to Septenber. In Maryl and and Virgini a, bl uefish are caught year-round, with peak catches earlier in the summer. In North Carolina, the bluefish fishery is year-round with peak catches in the winter: snall fish are taken in the sounds and nearshore waters from April through Decenber, and recently, great quantities of larger fish have been taken offshore during winter (Wilk 1977; Md-Atl antic FMC 1984). Fi shi ng gear enpl oyed varies wi del y from state to state, as presented in Table 3 for the years 1975 to 1977. Hand lines are used in New Engl and when school s of I arge fish are feeding; pound nets are common in Chesapeake Bay; traps and sei nes are generally used in inshore waters; trawls and gill nets are used both inshore and offshore in many states. During the last decade, otter traw s, gill nets, and pound nets have yi el ded about three-f ourths of the mid-Atlantic commercial catch, with seines and hand lines contributing most of the remai nder (M d-Atlantic FMC 1984).

There is no appreciable foreign catch or j oi nt vent ure catch of bluefish in U.S. waters, and no user conflicts have occurred yet, but fishery stock assessments by Anderson and Al nei da (1979) and Anderson (1980) suggest that any "major increase in

Table 2. U. S. comercial bluefishlandingsinthe mid-Atlantic states, 1950-85.

Year	Thousands of kilograns									Mllions of kilograns			$\begin{gathered} \text { Mllions of } \\ \text { dollars } \end{gathered}$
	MA	R	CT	NY	N	DE	MD	VA	NC	MA to	NC	US	us
1950	28	25	9	58	589	10	48	141	578	1.48		2.13	0.70
1955	17	14	15	213	461	1	29	100	198	1.05		1.92	0.59
1960	7	15								0.76		1.58	0.49
1965	65	49	2:	4288	20139	11	3	598	208308	1.42		2.28	0.58
1970	31	146					31	289	7	1.75		3.27	0.74
1975	250	174	39	408	482	8	126	1,493	898	3.94		4.65	1.48
1976	205	110	10	273	582	5	233	1,894	616	3.93		4.83	1.09
1977	229	111	6	448	635	14	238	1,440	1.060	4.18		5.24	1.31
1978	296	170	6	793	720	11	131	1,246	-885	4.26		5.26	1.61
1979	193	147	25	733	723	16	145	1,393	1,548	4.92		6.00	2.20
1980	231	166	24	677	637	73	199	1,280	2,475	5.76		7.12	2.43
1981	220	229	3	582	834	89	189	1,038	3,005	6.19		7.57	3.23
1982	455	302	55	783	891	232	121	1.151	1,950	5.94		7.41	3.68
1983	276	236	91	767	875	182	331	-691	3,067	6.52		7.59	2.58
1984	449	463	30	744	769	71	78	526	1.613	4.74		5.77	2.38
1985	387	769	45	969	904	79	194	706	1,638	5.69		6.23	2.36
0- year \& of U.S. total	4.7	4.3	0.5	10.7	12.0	1.2	2.9	18.0	28. 3	82.7		100.0	

${ }^{\text {a Ten y }}$ year total bluefish landings in each state, expressed as \% of U.S. total bl uefish I andi ngs for the period 1976-85.
*Less than $500 \mathbf{~ k g}$ reported.
Compiled from Wik (1977); Pileggi and Thompson (1978, 1979, 1980); Thompson (1981, 1982, 1983, 1984a, 1984b, 1985, 1986); Md-Atlantic FMC (1984); and unpubl i shed NMFS data.

Table 3. Percent of commercial bluefish landingsinthe Md-Atlantic states taken by vari ous types of fishing gear.

a Based on 3-year (1975-77) comercial Iandi ngs data.
based on 8-year (1975-82) comercial Iandings data.
*Less than 0.5% reported.
Compiled from Pileggi and Thompson (1978, 1980); Thompson (1984b); and MidAtlantic Fi shery Management Council (1984).
fishery pressure" nould likely push the harvest beyond the taking of "surpl us production." If so, they contend, recreational fishermen would probably suffer first.

Popul ation Dynamics

The migratory nature of blufish populations and the differential distribution of age cl asses make popula$t i$ on studi es of this speci es extremel y difficult. Schools are segregated by size, and sampling techniques typically reflect that segregation (\mathbf{W} / l, 1977). Taggi ng studi es, such as those by Lund and Maltezos (1970) and Sandy Hook Mari ne Laboratory (Wilk 1977) during the 1960's, and i chthyopl ankt on surveys by \mathbf{d} ark et al. (1969), Norcross et al. (1974), and Kendall and UAl ford (1979) have est abl i shed spawning areas, migration routes, and the exi stence of distinct spring spawning and summer spawni ng popul ati ons.

Yearlings of the summer spawning stock are di stingui shed by a slightly larger head, longer maxillae, larger eyes, snaller pel vic fins, larger pectoral fins, snaller soft dorsal and anal fins, and a larger gap bet ween the spiny and soft dorsal fins than the spring spawners. \quad der fish of the summer spawni ng stock can soneti mes be di stingui shed from spring spanners by the snaller distance between the center of a scale and its first annulus (Vilk 1977).

Estimates of popul ation density, nortality, natality and recruitnent, and age structure are at present weakl y based and incompl et e. The recreational fishery, our largest available data source, denonstrates a frequency peak of 1 -to- 2 year olds and a smaller peak of 8- to 12-year-olds during the years 1983 to 1985 (Holliday 1985b, 1986). Vilk (1977) reports that 1 - to 4 -year-old bl uefish comprised the bul k of the samples during the mid-1960's, and that all year cl asses bet ween 1962 through 1965
were of equal strength. Rel ative abundance of mid-Atlantic bl uefish has apparently increased si nce the 1960's, based on NMFS of fshore and inshore traw surveys, but fluctuations from year to year are large. Total annual nortality is estimated at 69\% to 75\% over all ages; annual fishing nortality is estinated at 27\% for Iarge fish and up to 70% for small fish (due to their greater vul nerability to i nshore fishermen); and annual nat ural nortality is estimated at 59% to 63% for I arge fish and 18% to 50% for small fish (Md-Atlantic FMC 1984).

The t no maj or spawni ng stocks have not yet been studi ed separatel y with respect to population dynanics and age structure; if they are indeed reproducti vel y i sol ated, then statistics based on pool ed data fromall bl uefish stocks are not very useful for purposes of stock nanagenent.

Regul ation and Management

Recreational and commercial fishing regulations for bluefish in the mid-Atlantic exist in several states, but lack of enf orcenent and inconsistency from state to state linit their effectiveness (VIIk 1977). The objective of states that do regul ate the fishery is generally to linit the catch of young- of-the-year bluefi sh, which is thought to pronote successful recruitment into larger, more desi rable age classes. The Magnuson Fi shery Conservation Management Act of 1976 created a series of regional Fi shery Managenent Councils to devel op overall management plans for important species and to coordi nate the states' managenent efforts. The Md-Atlantic (New York to Virginia) Fi shery Managenent Council completed a proposed Fi shery Managenent Pl an for bl uefish in 1984 in cooperation with the New Engl and FMC and South Atlantic FMC. The council adopted a provi si onal maxi mum sustai ned yi el d (MSY) of 95 milli on $\mathbf{~ k g}$ annual ly based upon MSY estimates by Boreman (1983) and NMFS (1983) and upon the evi dence
for increasi ng recruit nent from thei r traw surveys. The pl an proposed an allocation of 20% of the total U S. bl uefish catch for commercial fishermen, mostly in the mid-Atlantic region; the renai nder nould be allocated to recreational fishernen (Md-Atlantic FMC 1984). But the plan uas di sapproved by Congress that sane year because the bl uefish catch in the federally regulated Fishery Conservation Zone (3 to 200 miles) is only a snall fraction of the catch in nearshore (less than 3 miles) state regul ated waters, so Feder al regul ation was deened inappropriate (David Kei fer, M d-Atlantic FMC, pers. comm.). Currently, the three Fi shery Managenent Councills are uorking with the Atlantic States Marine Fisheries Commissi on, a coal ition of state agencies, to devel op a coast-wi de plan to be adopted by all states in lieu of a federal nanagement plan.

ECOLOG CAL ROLE

Food and Feedi ng

Bl uefish are voracious predators throughout thei r I i ves, rel yi ng primarily on vision to detect prey, al though their ol factory sense is al so well-devel oped (Ola et al. 1970; Wilk 1977). Food habits of I arvae and early juveni les have not been wel I studi ed, but they presumably sel ect vari ous zoopl ankton, i ncl udi ng I arvae of other pel agi c-spawni ng fishes (Norcross et al. 1974; Kendal I and Val ford 1979). Young-of-the- year arriving in the coastal nursery areas feed on snall shrimp, anchovies, killifish, sil versi des, and nany other avail able prey; those remai ning at sea probably find snall pel agi c fishes and crustaceans as forage. As their size increases, so does the list of potential prey. A wi de variety of fish and i nvertebrates have been recovered from bl uef ish stomachs, i ncl uding such unl ikel y itens as the sand dol lar (Echi narachni us parma), the sea I amprey (Petronyzon nariñins), various
sharks and rays, and the northern puffer (Sphoeroitdes macılatus). More typical fare of aduTts incTudes the common saui d (Loligo peali), ., various shrimp a' nd crabs, a lewives (Al osa pseudoharengus), and ot her shad and herrinas. AtI antic menhaden (Brevoortia tyrannus), silver hake (pinfishcius bilinearis),
(Lagodon rhomboi des), spot (Lei ost omus xanthurus), butterfish (Fepr"'ius triacanthus), smaller bluefish, and nany other species (Wilk 1977; Ri chards 1976).

Lassiter (1962) noted the el imination of invertebrates from the di et as bl uefish increase in size. Anong young adults the stonach contents typically include 10% to 20% i nvertebrates by vol une, but I arger fish are al nost excl usi vely piscivorous. Young fish al so chop their food i nto snaller pi eces, naking di et anal ysis nore difficult; I arge adults typi cally swallow their prey whole.

Feedi ng acti vity peaks in early norni ng and conti nues throughout dayIi ght hours (Lund and Maltezos 1970). In studi es of captive bl uef i sh, the normally cl ose- knit school breaks up during feeding as indi vi dual s break away to chase particular prey. The fish regroup a few minutes after the prey have been consuned. Fish satiated on small prey resume feeding when larger prey of the sane speci es are of fered, suggesting that feeding notivation is influenced by prey size (Ola et al. 1970).

Predation, Parasitism and Competition
Predation upon the pl ankt onic eggs and I arvae of bl uefish has not been docunented. Juveniles are preyed upon by adults of thei r own species and probably by ot her I arge coastal and estuarine predators. Adults are probabl y eaten by sharks, tuna, and swordfish (${ }^{\prime}$ Ik 1977; Md-Atlantic FMC 1984).

Anderson (1970) presents an annotated list of parasitic crustacea, acanthocephal a, cestoda, trenatoda, nematoda, and a di noflagellate protozoan that have been taken from bl uefish; the list is also published in Wik (1977). Meyers et al. (1977) describe a sporozoan that invades the heart muscle of bluefish. Newnan et al. (1972) report on the bacterial flora of the bl uefish intestine.

Oher fish species sharing the same prev resources with bl uefish incl ude- striped bass (Mbrone saxatilis), spotted sea trout (Cynoscion nebul osus), weakfish (C. regalis), and various Carangi dae and Scombridae (Manooch 1984: Fav et al. 1983), bu' \mathbf{t} di rect evidence of interspecific competition has not been denonstrated, si nce bl uefish are hi ghly opportunistic and transi ent feeders. Being a top predator and seasonal ly very numerous, it is likely that bluefish play a role in structuring communities of prey speci es.

Physi ol ogi cal Ecol ogy

Bl uefish have one of the fastest ai r bl adder secretion/ resorption rates known anong Perciform fishes, all owing rapid buoyancy adj ust ment (Bentley and viley 1982). Studi es of swi ming energetics show that bluefish switch from active opercular punping of the gills to ram (passi ve) ventilation of the gills at speeds of 4.0 to 4.6 bodyl engths per sec (Freadman 1979). Like certain other large pel agic predators, bluefish can mai ntain their body temperat ure up to $4{ }^{\circ} \mathrm{C}$ above anbi ent (Md-Atlantic FMC 1984).

EMM RONMENTAL REQU REMENTS AND STRESS

Temperat ure

Temperature is probably the single nost important envi ronnental parameter determining bl uefish di stribution, migration, feeding,
spanning, and recruitment success (Lund and Maltezos 1970). 01la and St udhol ne (1975) and Ola et al. (1975) examined responses of bl uefish to thermal changes in a 120,000-I aquarium At the acclimation temperat ure of $20{ }^{\circ} \mathrm{C}$, their small group of adult bluefish (45 to 55 cm TL) suam conti nuously day and night, typi cally in a close school during the day at a speed of about $50 \mathrm{~cm} / \mathrm{sec}$, and indi vi dual ly during the ni ght at speeds of about $15 \mathrm{~cm} / \mathrm{sec}$. These speeds and daily rhythns were nai ntai ned over a tenperature range of 18 to $22{ }^{\circ} \mathrm{C}$. When temperature was increased or decreased si owly beyond this range, the fish responded to ei ther treatnent with increased day and ni ght crui sing speeds. At the upper and lower "stress" temperatures (about $30^{\circ} \mathrm{C}$ and $12{ }^{\circ} \mathrm{C}$, respectively), the daily rhythm was repl aced by nearly constant high speed swi ming, nore than triple the acclimation speeds; al so, the school did not break up at ni ght, and the fish showed little interest in food. At $35{ }^{\circ} \mathrm{C}$, loss of equilibrium was noted. The authors interpret the observed increases in crui sing speed as an avoi dance strategy. Si nce the fish are highly transient, with little incentive to remain in a localized area, rapid swi ming is an appropriate strategy to transport the fish away from localized patches of unf avorable condi ti ons.

The 18 to $22{ }^{\circ} \mathrm{C}$ temperature range for minimum crui sing speed corresponds well with the thernal regi mes from which the maj ority of commercial and recreational bluefish catches are taken, and al so with conditions in the mid-Atlantic bi ght where sumer spanning occurs (Norcross et al. 1974). The south Atlantic waters bet neen the continental shel f and the Gulf Stream where spring spawning occurs, average slightly higher, 20 to $26^{\circ} \mathrm{C}$. Juveniles drifting north of Cape Hatteras congregate at the Gulf Streanicontinental shel f interface in the midAtlantic while shelf waters are still
much cool er. As the season advances, the shelf waters warm and the young bl uefish make their voyage across the shel f to the est uaries when shel f temperatures reach 18 to $20{ }^{\circ} \mathrm{C}$. These ther nal edges apparently serve as i mportant cues to j uvenile migration, insuring that the young arrive in suitably narm nursery habitats (Kendal I and VAl ford 1979).

Phot operi od

In a study of daily and seasonal rhythns of bluefish, dla and Studhol me (1972, 1978) found that activity increased sharply, i medi atel y at daybreak, conpared to the slow ni ghttime cruising speed, continued to increase gradually until noon, and then decreased steadily throughout the afternoon until 1 to 2 hrs after dark, when the ni ghtti ne swi ming speed resuned. This daily rhythm is maintai ned during al I seasons, independent of phot operi od. However, increasi ng phot operi od causes significant increases in both daytine and ni ghttine speeds. A photoperi od of 10.3 light hours (correspondi ng to wi nter nonths) induces an average swi ming speed 17% less than a $\mathbf{1 2 - h r}$ day (spring and fall nonths) and 50% less than a 14 - hr day (summer nonths). Photoperiod thus appears to be the cue that keeps bl uefish noving during the warm nonths and keeps them rel ati vely stationary in winter, whereas temperature provi des a nore proxi nal cue to distingui sh favorable from unf avorable patches of habitat.

Salinity

J uvenile and adult bluefish are noderately euryhal ine, occasi onally ascending well into estuari es where salinities may be less than 10 ppt (Lippson and Li ppson 1984). Eggs and I arvae are probably less adaptable: Kendal I and Whlford (1979) report salinities bet ween 35 and 38 ppt in the south Atlantic continental slope waters where the spring spawners ori gi nate, and 30 to 32 ppt in the
nid-Atlantic summer spawning waters. Whether salinity gradients can act as barriers to migration, as thernal gradients can, has not been determ i ned.

Oxygen

Pel agic open-ocean fishes are usually not well adapted for low oxygen conditions. Swanson and Sindernan (1979) noted a conspi cuous absence of bl uefish, anong other species, in a large low oxygen mass of water that devel oped during the summer of 1976 a few kiloneters of f the coast of northern New Jersey, where extensive kills of surf clans, ocean quahogs, and sone fish were reported. Snall bluefish that migrate close to shore and very large fish that migrate far offshore appeared as usual al ong Connecticut and Long Isl and that sum mer, but mid-size fish (1.5 to 5.5 kg) were stopped by the foul water mass and reversed di rection, returning to southern New Jersey and Del aware for the remai nder of the uarmseason. Al ong certai n New Jersey beaches, winds and currents periodically brought the low oxygen water mass agai nst the shore; bl uefi sh, striped bass, and other speci es were observed swi ming lethargically and gasping at the water surface (a typi cal oxygenstress response).

Contaminants

Mahoney et al. (1973) found a hi gh inci dence of fin rot di sease in bl uefish, fl ounder, and ot her fi shes for sone period during the summers of every year from 1967 through 1973 in the New York Bight. Bacteria of the genera Aerononas, Vibrio, and Pseudononas were isolated from fish showing chronic fin necrosi s, skin henorrhage and ul cers, and blindness. These authors suggest that heavy netal contami nants (copper, zinc, chromi um and lead were measured in hi gh concentrations in the area) weakened the fishes' imme response to these facultative pathogenic bacteria, which
were al so present in unusually high concentrations because of poorly treated munici pal and i ndustrial sewage di scharge. Laborat ory experi nents usi ng muni ci pal sewage wi thout heavy metal s did not induce the di sease.

Mears and Ei sl er (1977) exami ned concentrations of metals in the liver of bluefish, and found it positively correl ated with body size. Cross et al. (1973). found a si milar rel ationship for metal accumal ation in white muscle of bl uefish. New York and New Jersey State governments have issued warni ngs in recent years agai nst eating bluefish and other predatory fishes because of high concentrations of PCBs in their muscles (Md-Atlantic

FMC 1984). Currently, the National Marine Fi sheries Service is conducting a body-burden study of toxi c chemi cal accumal ation in bl uefish (David Kei fer, pers. comm.).

017 l and Studhol ne (1975) state that the behavi oral repertoi re of bl uefish is well adapted for avoi dance of unf avorable conditions, but such avoi dance depends upon the fishes' ability to detect cont ami nants and recogni ze them as hazardous, and al so upon the notivation of the fishes to be in that area. If spawning or nursery waters are cont ami nated, or migration routes are thermally or chemically "blocked, " or if contam i nation is present in the food supply, then avoi dance becomes i mpossi ble.

Anderson, H G , Jr. 1970. Annot at ed list of parasites of the bluefish. U. S. Bur. Sport Fi sh. Wildl. Tech. Rep. Nb. 54. 15 pp.

Ander son. E. D. 1980. A oreliminary assessment of the bl uefish Pomatomus sal tatrix al ong the Atlantic coast of the United States. U.S. Natl. Mar. Fi sh. Serv., Wbods Hol e Lab. Ref. Doc. No. 80-30. 29 pp.

Anderson, E. D. , and F. P. Al nei da. 1979. Assessnent of the bl uefish Ponatoms saltatrix of the Atlantic coast of the Uni ted States. U. S. Natl. Mar. Fi sh. Serv., Woods Hole Lab. Ref. Doc. No. 79-19. 15 pp.

Barger, L. E., L.A Collins, and J.H. Fi nucane. 1978. Fi rst record of bl uefish I arvae Ponatomus sal tatrix in the Gulf of Mexico. Northeast Gulf Sci. 2(2):145-148.

Bentley, T. B., and M L. Viley. 1982. Intra- and inter-specific variation in buoyancy of some estuarine fishes. Envi ron. Bi ol . Fi shes 7(1):77-81.

Bi gel ow H. B., and WC. Schroeder. 1953. Fi shes of the Gul f of Mai ne. U. S. Fi sh. Vill dl . Serv. Fi sh. Bull. 53. $\quad 577$ pp.

Boreman, J. 1983. Stat us of bl uefish al ong the Atlantic coast, 1982. U. S. Nat I. Mar. Fi sh. Serv., Wbods Hol e Lab. Ref. Doc. No. 83-28. 35 PP.

Clark. J.R. 1962. The 1960 saltuater angling survey. U.S. Fi sh. Villd . Serv. Circ. Nb. 153. 36 pp.

Clark, J., WG Smith, A. W Kendal I, Jr., and MP. Fahay. 1969. Studi es of estuarine dependence of Atlantic coastal fishes. Data report I: Northern section, Cape Cod to Cape Lookout. U. S. Bur. Sport Fi sh. Wildl. Tech. Pap. Nb. 59. 97 pp.

Cross, F. A. L. H Hardy, N Y. Jones, and R.T. Barber. 1973. Rel ation bet ween total body wei ght and concentrations of nanganese, iron, copper, zinc, and mercury in white muscle of bl uefish Ponatomus saltatrix and a bathy-denersal fish Anti nora rostrata. J. Fi sh. Res. Board Can. 30(9):1287-1291.

Deuel, D. G 1973. The 1970 saltuater angling survey. U.S. Natl. Mar. Fi sh. Serv. Curr. Fi sh. Stat. No. 6200. 54 pp.

Deuel , D. G. and J.R. Cl ark. 1968. The 1965 salt-water angling survey. U. S. Fi sh. Wildl. Serv. Resour. Publ . No. 67. 51 pp.

Deuel , D. G. J.R. Cl ark, and A.J. Mansueti. 1966. Description of entryon-ic and early larval stages of the bl uefish, Ponat omus sal tatrix. Trans. Am Fi sh. SOC. 95(3):264-271.

Fay, C. W, R.J. Neves, and G. B. Pardue. 1983. Species profiles: life histories and environment al re-
qui renents of coastal fishes andinvertebrates (mid-Atlantic)striped bass. U.S. Fi sh. Vildi. Serv. FWS/0BS-82/11.8. 36 pp.

Freadman, MA 1979. Swi ming energetics of striped bass and bl uefish: gill ventilation and swiming met abol ism J. Exp. Bi ol. 83:217230.

Hol Iiday, MC. 1984. Marine recreational fishery statistics survey, Atlantic and gulf coasts, 1979-1980. U. S. NatI. Mar. Fi sh. Serv. Curr. Fi sh. Stat. No. 8322.

Holliday, H.C. 1985a. Marine recreational fishery statistics survey, Atlantic and gulf coasts, 1981-1982. U. S. Natl. Mar. Fi sh. Serv. Curr. Fi sh. Stat. No. 8324.

Hol Ii day, MC. 1985b. Marine recreational fishery statistics survey, Atlantic and gulf coasts, 1983-1984. U. S. NatI. Mar. Fi sh. Serv. Curr. Fi sh. Stat. No. 8326.

Hol Iiday, MC. 1986. Marine recreational fishery statistics survey, Atlantic and gulf coasts, 1985. U. S. Natl. Nar. Fi sh. Serv. Curr. Fi sh. Stat. No. 8327.

J or dan, D. S. , and B. W Ever nann. 1896-1900. The fishes of North and M ddlle Anerica. U.S. Natl. Mis. Bull. 47(1):945-7.

Kendal I, A. W, Jr., and L. A. Will ford. 1979. Sources and di stribution of bl uefish Ponatomus sal tatrix, I arvae and j uveniles off the east coast of the United States. U.S. Natl. Mar. Fish. Serv. Fish. Bull. 77(1):213-227.

Lassiter, R. R. 1962. Life historv aspects of the bl uefish Ponatomus sal tatrix, from the coast of North Carolina. MS. Thesis. NC. State Uni versity, Ral ei gh. 103 pp.

Li ppson, A.J., and R.L. Li ppson. 1984. Life in the Chesapeake Bay. Johns Hopki ns Uni v. Press, Bal tinore. 230 pp.

Li ppson, A.J., and R. L. Mbran. 1974. Manual for identification of early devel opnental stages of fishes of the Pot onac Ri ver Estuary. Marti n Marietta Corp. Environ. Tech. Cen. Rep. PPSP- MP- 13. 282 pp.

Lund, WA, Jr. 1961. A raci al i nvesti gation of the bl uefish Ponatomus sal tatrix of the Atlantic coast of North Aneri ca. Bol. Inst. Oceanogr. Uni v. Oriente Cunana (Venezuel a), 1(1):73-129.

Lund, WA, J r., and G. Mal tezos. 1970. Mbvenents and migrations of the bl uefish Ponat omus sal tatrix tagged in wat ers of New York and southern New Engl and. Trans. Am Fi sh. Soc. 99(4):719-725.

Nahoney, J., F. M dlige, and 0. Deuel. 1973. The fin rot di sease of mari ne and euryhal ine fishes in the New York Bi ght. Trans. Am Fish. Soc. 102(3):596-605.

Manooch, C. S. 1984. Fi sher man' s gui de - fishes of the southeastern United States. NC. State Museum of Natural History, Ral ei gh. 362 pp.

Mears, HC. and Eisler, R. 1977. Trace netal s in liver from bl uefish, tautog, and tilefish in rel ation to body I ength. Chesapeake Sci. 18(3):315-318.

Meyers, T. R., T. K Sawyer, and S. A MacLean. 1977. Henneguya sp. (Oni dospora: Myxosporida) parasitic in the heart of the bl uefish Pomatomus saltatrix. J. Parasitol. $\overline{63(5)}: \overline{890-896 .}$

Md-Atl antic Fi shery Managenent Council (Md-AtI antic FMC). 1984. Bl uefish fishery nanagenent plan. Md-Atlantic FMC in cooperation with the U.S. Natl. Mar. Fi sh. Serv., New

Engl and FMC, and South Atl antic FMC. 109 pp. + appendi ces.

MIIer, G. L., and S.C.J orgenson. 1973. Meristic characteristics of sone marine fishes of the uestern Atl antic Ocean. U.S. Natl. Mar. Fi sh. Serv. Fi sh. Bul I. 71(1) : 301313.

Newnan, J.T., Jr., B. J. Cosenza, and J.D. Buck. 1972. Aerobic microflora of the bl uefish Ponatomus saltatrix intestine. J. Fish. Res. Board Can. 29(3):333-336.

Nor cross, J.J., S. L. Ri chardson, WH Massmann, and E. B. Joseph. 1974. Devel opment of young bl uef ish (Pomatomus saltatrix) and di stribution of eggs and young in Virgi ni a coastal waters. Trans. Am Fi sh. Soc. 103(3):477-497.

Cla, B. L. , HM Katz, and A. L. St udhol me. 1970. Prey capt ure and feedi na notivation in the bl uefish. Pomatomus saltatrix. Copeia 1970(2):360-362.

Q la, B. L. , and A. L. St udhol me. 1972. Daily and seasonal rhythyns of activity in the bl uefish Ponatomus saltatrix. Pages 303-326 in HE. Winn and B.L. ${ }^{2}$ la, eds. Behavior of marine ani mal s: recent advances. Vol . 2, Chapt er 8. Pl enum Publ i shi ng Corp., New York.

O I a, B. L. and A. L. St udhol me. 1975. Environnental stress and behavior: response capabilities of marine fishes. Pages 25-31 in Second joint U. S. / U. S. S. R. symposi um on the comprehensi ve anal ysi s of the envi r onment. Honol ul u, Hawai i, 2126 Oct ober 1975. U. S. Envi ron. Prot. Agency.

011 a, B. L., A. L. Studhol ne, A.J. Bej da, C. Sanet, and A. D. Martin. 1975. The effect of temperature on the behavior of narine fishes. Pages 299-308 in Combi ned effects of radi oactive, chemical, and thernal
rel eases to the envi ronnent. I nter nat i onal At omi c Energy Agency, Vienna, Austria.

Ola, B. L., and A.L. Studhol ne. 1978. Comparati ve aspects of the activity rhythns of tautog, bl uef i sh, and Atlantic mackerel as rel ated to their life habits. Pages 131-151 in J. E. Thorpe, ed. Rhythmic activity of fishes. Acadenic Press, London.

Pileggi, J., and B. G. Thompson. 1978. Fishery statistics of the Uni ted States, 1975. U. S. Natl. Mar. Fi sh. Serv. Stat. Dig. No. 69.

Pileggi, J., and B. G. Thompson. 1979. Fi sheri es of the Uni ted States, 1978. U. S. Nat 1. Mar. Fi sh. Serv. Curr. Fi sh. Stat. No. 7800.

Pileggi, J., and B. G. Thompson. 1980. Fi shery statistics of the United States, 1976. U. S. NatI. Mar. Fi sh. Serv. Stat. Dig. No. 70.

Ri chards, S. W 1976. Aae, ar outh, and food of bl uef ish "(Ponat omus saltatrix) from east-central Long Island Sound from July through Novenber 1975. Trans. - Am Fi sh. Soc. 105(4):523-525.

Swanson, R. L., and C.J. Si nder man. 1979. Oxygen depl etion and associated benthic nortalities in New York Bi ght, 1976. NOAA Prof. Pap. 11.

Thompson, B. G 1981. Fi sheri es of the United States, 1980. U.S. Natl. Mar. Fi sh. Serv. Curr. Fi sh. Stat. Nb. 8100.

Thompson, B. G 1982. Fi sheri es of the United States, 1981. U.S. Natl Mar. Fi sh. Serv. Curr. Fi sh. Stat Nb. 8200.

Thompson, B. G 1983. Fi sheri es of the United States, 1982. U.S. NatI. Mar. Fi sh. Serv. Curr. Fi sh. Stat. Nb. 8300.

Thompson, B.G. 1984a. Fi sheri es of the United States, 1983. U.S. NatI. Mar . Fi sh. Serv. Curr. Fi sh. Stat. No. 8320.

Thompson, B.G. 1984b. Fi shery statistics of the United States, 1977. U. S. Natl. Mar. Fi sh. Serv. Stat. Dig. No. 71.

Thompson, B. G 1985. Fi sheri es of the United States, 1984. U. S. Natl. Mar. Fi sh. Serv. Curr. Fi sh. Stat. No. 8360.

Thompson, B. G 1986. Fi sheries of the United States, 1985. U. S. Natl. Mar. Fi sh. Serv. Curr. Fish. Stat. Nb. 8380.
U. S. Nati onal Marine Fi sheri es Service (NMFS). 1983. Stat us of the fishery resources off the Northeastern United States in 1982. NMFS-F/NEC-22. 128 pp.

Vilk, S. J. 1977. Bi ol ogi cal and fisheries data on bl uefish Pomatoms sal tatrix. U. S. NatI. Mar. Fi sh. Serv., Sandy Hook Lab., Highlands, NJ. Tech. Ser. Rep. 11.

VII k, S.J. and B. E. Brown. 1980. A description of those fisheries, which take place in the western north Atlantic between the U.S.Canadi an border and North Carolina, which presently have or potentially could have user group allocation conflicts. In: Proceedi ngs of the international symposi um on fishery resources al location. Vi chy, France. 20-24 April, 1980.

Wik, S.J., WW Mbrse, and D.E. Ral ph. 1978. Lengt h - wei ght rel ati onshi ps of fishes collected in the New York Bi ght. Bull. NJ. Acad. Sci. 23(2):58-64.

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

U.S. DEPARTMENT OF THE INTERIOR HSHAD WRDIE SRME

TAKE PRIDE in America

UNITED STATES
DEPARTMENT OF THE INTERIOR
FISH AND WILDLIFE SERVICE
postage AND fess paid U.8. DEPARTMENT OF THE INTERION National Wetlands Research Center NASA-Slidell Computer Complex

1010 Gause Boulevard Slidell, LA 70458

